Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.

نویسندگان

  • Florian T Muijres
  • Melissa S Bowlin
  • L Christoffer Johansson
  • Anders Hedenström
چکیده

Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wake structure and wingbeat kinematics of a house-martin Delichon urbica.

The wingbeat kinematics and wake structure of a trained house martin in free, steady flight in a wind tunnel have been studied over a range of flight speeds, and compared and contrasted with similar measurements for a thrush nightingale and a pair of robins. The house martin has a higher aspect ratio (more slender) wing, and is a more obviously agile and aerobatic flyer, catching insects on the...

متن کامل

Kinematics of flight and the relationship to the vortex wake of a Pallas' long tongued bat (Glossophaga soricina).

To obtain a full understanding of the aerodynamics of animal flight, the movement of the wings, the kinematics, needs to be connected to the wake left behind the animal. Here the detailed 3D wingbeat kinematics of bats, Glossophaga soricina, flying in a wind tunnel over a range of flight speeds (1-7 m s(-1)) was determined from high-speed video. The results were compared with the wake geometry ...

متن کامل

Vortex Dynamics in Near Wake of a Hovering Hawkmoth

Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted with a biology-inspired dynamic flight simulator. This simulator is developed to be capable of ‘flying’ an insect on a basis of realistic wing-body morphologies and kinematics. The computed results show a three-dimensional mechanism of vortical structures in hawkmoth hovering. A...

متن کامل

Span efficiency in hawkmoths.

Flight in animals is the result of aerodynamic forces generated as flight muscles drive the wings through air. Aerial performance is therefore limited by the efficiency with which momentum is imparted to the air, a property that can be measured using modern techniques. We measured the induced flow fields around six hawkmoth species flying tethered in a wind tunnel to assess span efficiency, ei,...

متن کامل

Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.

Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 67  شماره 

صفحات  -

تاریخ انتشار 2012